
 
Diosmin Mitigates Sodium Arsenite-Induced Reproductive Dysfunction via Oxidative/Inflammatory Modulation and 

AKT/ERK Pathways in Male Rats  

Received: 9-9-2025       Accepted: 29-9-2025  Corresponding author: Heba Mohamed Abdou 

 

 

 

Diosmin Mitigates Sodium Arsenite-Induced Reproductive Dysfunction via 
Oxidative/Inflammatory Modulation and AKT/ERK Pathways in Male Rats. 

yasmine Khaled Mohamed
1
, Nema Mohammed Abd El-Hameed

1
,
 
Hussein Khamis Hussein

1
,
 
Heba Mohamed Abdou

1* 

 

  

1) Zoology Department, Faculity of Science, Alexandria University, Egypt. 
 

 

   

 
 

 

1. INTRODUCTION 

Arsenic, a ubiquitous environmental 

contaminant, poses a significant threat 

to human health, with sodium arsenite 

(As) being a particularly potent form 

inducing severe toxicity across various 

organ systems (Ganie et al., 2024). 

Reproductive toxicity is a major 

concern, as  As  exposure  has been 

 

 

 

 

 

 

 consistently linked to impaired 

spermatogenesis, hormonal imbalances, 

and compromised fertility in both 

humans and experimental animals (Renu 

et al., 2018). The primary mechanisms 

underlying As-induced reproductive 

dysfunction involve the generation of 

reactive oxygen species (ROS), leading 

to oxidative stress, and the activation of 

inflammatory pathways (Choudhary et 

al., 2024). These processes disrupt the 

delicate balance of testicular function, 

affecting steroidogenesis, sperm 

maturation, and overall reproductive 

capacity. 

Oxidative stress, characterized by an 

imbalance between ROS production and 

antioxidant defenses, plays a pivotal role 

in As-mediated testicular damage. As 

exposure depletes endogenous 

antioxidants such as glutathione (GSH), 

superoxide dismutase (SOD), and 

catalase (CAT), while simultaneously 

increasing lipid peroxidation, as 

indicated by elevated thiobarbituric acid 

reactive substances (TBARS) 

(Rachamalla et al., 2022). Furthermore, 

As triggers inflammatory responses 

through the activation of nuclear factor 

kappa B (NF-κB) and the release of pro-

inflammatory cytokines such as tumor 

necrosis factor-alpha (TNF-α) (Mohtadi 

et al., 2023 & Choudhary et al., 2024). 

These inflammatory mediators 

contribute to cellular damage and further 

exacerbate oxidative stress. 

In addition to oxidative stress and 

inflammation, As exposure disrupts 

critical cellular signaling pathways, 

including the Protein Kinase B (Akt) 

and Extracellular Signal-Regulated 

Kinase (ERK) pathways, which are 

essential for testicular function and germ 

cell survival (Yao et al., 2018; Mishra et 

al., 2024). Dysregulation of these 

pathways can lead to apoptosis of germ 

cells and impaired steroidogenesis, 

further contributing to reproductive 

toxicity. 
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ABSTRACT: 

Arsenic (As), a ubiquitous environmental contaminant, poses a significant 

threat to human health. Diosmin (DIO), a natural flavone glycoside found in 

citrus fruits. This study inspected the protective effects of DIO against As-

induced testicular toxicity in adult male rats, with emphasis on oxidative 

stress, inflammation, and AKT/ERK signaling pathways. Twenty-four adult 

male albino rats were randomly assigned into four groups: control, As (10 

mg/kg BW /day), As+DIO (10 mg/kg BW As + 200 mg/kg BW DIO/day), and 

DIO-only (200 mg/kg BW /day), orally for 35 days. As exposure significantly 

impaired sperm parameters, reduced reproductive hormone levels 

[gonadotropin-releasing hormone (GnRH), testosterone, follicle-stimulating 

hormone (FSH), and luteinizing hormone (LH)], and decreased steroidogenic 

enzymes. It also elevated oxidative stress [thiobarbituric acid reactive 

substances (TBARS)], inflammatory markers [nuclear factor kappa B (NF-κB) 

and tumor necrosis factor-alpha (TNF-α)], protein kinase B/extracellular 

signal-regulated kinase (AKT/ERK) signaling, and caspase-3 expression, 

while suppressing antioxidant enzymes [reduced glutathione (GSH), 

superoxide dismutase (SOD), and catalase (CAT)]. Co-treatment with diosmin 

(DIO) markedly restored antioxidant balance, reduced inflammation, 

normalized hormone and enzyme levels, and improved AKT/ERK signaling. 

Histological analysis confirmed structural recovery in testicular tissues and 

reduced caspase-3 expression. 

These results highlight DIO’s potential to counteract As-induced reproductive 

toxicity by modulating oxidative stress, inflammation, and key signaling 

pathways, supporting its therapeutic value in protecting male reproductive 

health. 

Keywords: Diosmin; Arsenite; Oxidative Regulation; impaired steroidogenesis; 

apoptosis. 
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Diosmin (DIO), a naturally occurring flavonoid found in 

citrus fruits, has garnered significant attention due to its 

potent antioxidant and anti-inflammatory properties 

(Malayeri et al., 2024; Ahmed et al., 2016). Previous studies 

have demonstrated that DIO can effectively scavenge ROS, 

enhance antioxidant enzyme activity, and suppress 

inflammatory responses (Mohtadi et al., 2023; Oyovwi et al., 

2024). Moreover, flavonoids have been shown to modulate 

gene expression and cellular signaling pathways, suggesting 

that DIO may offer a protective role against As-induced 

reproductive toxicity (Martin & Touaibia, 2020; Wang et al., 

2021). Therefore, this study aimed to inspect the protective 

effects of diosmin against As-induced reproductive toxicity in 

male rats, focusing on the concerted action of 

oxidative/inflammatory regulation and AKT/ERK signaling. 

2. Materials and Methods 

2.1. Experimental animals and procedures 

Twenty four adult male albino rats (approximately 11-12 

weeks old, weighing (190-200g) were obtained from 

experimental animal center, medical research institute, 

Alexandria University, Alexandria, Egypt. The animals were 

housed in standard polypropylene cages under controlled 

environmental conditions (temperature 22 ± 2°C, humidity 50 

± 10%, 12-hour light/dark cycle) with free access to standard 

rodent chow and water. All experimental procedures were 

conducted in accordance with the guidelines of the 

Institutional Animal Ethics Committee of Alexandria 

University, Egypt, and approved under protocol number AU 

04 22 08 27 1 01 

After a one-week acclimatization period, the rats were 

randomly divided into four groups (n=6 per group): 

Control Group: Received vehicle (distilled water) orally.  

As-Treated Group: Received sodium arsenite (As, Alpha 

Chemika for chemical industries, Mumbai India. (Cat. No 

AL4065) India, at a dose of 10 mg/kg body weight (BW) 

(Morakinyo et al., 2010) per day orally, dissolved in distilled 

water. 

As+ DIO-Treated Group: Received As (10 mg/kg BW/day) 

and DIO was supplied by Nutrition Greenlife Co., New York, 

NY, USA. at a dose of 200 mg/kg BW/day (Habib et al., 

2022) orally, both dissolved in distilled water. 

DIO-Supplemented Group: Received DIO (200 mg/kg 

BW/day) orally, dissolved in distilled water. 

All treatments were administered orally via gavage for 35 

consecutive days. 

2.2. Sample Collection and tissue homogenate preparation 

Twenty-four hours after the last treatment, the rats were 

anesthetized with a combination of ketamine (Ketalar, Pfizer, 

USA; 90 mg/kg) and xylazine (Xyla-Ject, Adwia, Egypt; 10 

mg/kg). Blood samples were collected via cardiac puncture 

and centrifuged at 3000 rpm for 15 minutes at 4 °C to 

separate serum. The testes were immediately excised, 

weighed, and processed for various analyses. One testis from 

each animal was fixed in 10% formalin for histological and 

immunohistochemical studies. The contralateral testis was 

snap-frozen and stored at −80 °C for biochemical and gene 

expression analyses. 

For biochemical analyses, the collected testicular tissues were 

carefully minced, rinsed with ice-cold PBS (pH 7.4), and 

homogenized (10% w/v) using a Dounce glass homogenizer. 

The resulting homogenates were centrifuged at 2,000 rpm for 

10 minutes at 4 °C, and the supernatants were collected and 

stored at −20 °C until subsequent biochemical evaluations. 

 2. 3. Biochemical assays:  

2.3.1. Oxidative stress and antioxidant assessment:  
Testicular lipid peroxidation was estimated by measuring 

thiobarbituric acid reactive substances (TBARS) according to 

Draper & Hadley, (1990). Briefly, testis homogenates were 

incubated with thiobarbituric acid in an acidic medium and 

heated, allowing malondialdehyde (MDA) to form a 

chromogenic complex. The absorbance was measured at 532 

nm, and TBARS levels were expressed as nmol MDA 

equivalents per mg protein. 

Reduced glutathione (GSH) levels were quantified as a major 

non-enzymatic antioxidant following the method described 

by Beutler et al. (1963). Briefly, GSH reacts with 5,5′-dithio-

bis(2-nitrobenzoic acid) (DTNB) to form a yellow-colored 

product, and the absorbance was measured 

spectrophotometrically to determine GSH concentration 

(BioDiagnostic, Egypt; Cat. No: GR 2511). Enzymatic 

antioxidant activities of superoxide dismutase (SOD) and 

catalase (CAT) were measured using commercially available 

kits (BioDiagnostic Co., Giza, Egypt; SOD: Cat. No. 

SD2521, CAT: Cat. No. CA2517). SOD activity was 

determined according to the method of Nishikimi et al. 

(1972), which relies on the inhibition of nitroblue tetrazolium 

(NBT) reduction by the superoxide anion. CAT activity was 

assayed following the method of Aebi (1984), based on the 

decomposition rate of hydrogen peroxide at 240 nm. 

2.3.2. Inflammatory markers in testicular tissue:  

The levels of NF-κB and TNF-α in testicular tissue 

homogenates were quantified using commercially available 

Enzyme-Linked Immunosorbent Assay (ELISA) kits (NF-

κB: Cat. No. MBS453975; TNF-α: Cat. No. MBS282960; 

MyBioSource, San Diego, CA, USA) according to the 

manufacturer’s protocols. The absorbance was measured at 

450 nm using a microplate reader. These methods were 

performed following previously published protocols for NF-

κB (Lawrence, 2009) and TNF-α quantification (Balkwill, 

2009), which validate ELISA as a reliable approach for 

inflammatory biomarker determination. 

2.3.3. Lipid profile assessment:  

Serum concentrations of total cholesterol, triglycerides, high-

density lipoprotein cholesterol (HDL-C), and low-density 

lipoprotein cholesterol (LDL-C) were determined using 

commercially available colorimetric kits (Bio Diagnostic Co., 

Giza, Egypt; Cat. No. CH1220, TR2030, CH1230, and 

CH1231, respectively) following the manufacturer’s 

instructions. The methodologies used for total cholesterol, 

triglycerides, HDL-C, and LDL-C estimation were based on 

previously published methods by Allain et al. (1974), Fossati 

& Prencipe (1982), Lopes-Virella et al. (1977), and 

Friedewald et al. (1972), respectively. 

2.3.4. Hormonal and steroidal enzyme levels:  
Serum concentrations of gonadotropin-releasing hormone 

(GnRH), testosterone, follicle-stimulating hormone (FSH), 

and luteinizing hormone (LH) were quantified using enzyme-

linked immunosorbent assay (ELISA) kits (MyBioSource, 
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USA; Cusabio, USA; FineTest, Wuhan, China; and 

Elabscience, USA; GnRH: Cat. Nos. MBS2020839 & CSB-

E05100r, FSH: Cat. No. ER0960, LH: Cat. No. E-EL-R0026, 

respectively). These assays employ a quantitative sandwich 

ELISA format, in which target hormones are captured by 

specific antibodies, and the resulting colorimetric signal 

intensity is directly proportional to their concentrations (Han 

et al., 2022; Mahmoud et al., 2025; Hwang et al., 2025; 

Olojede et al., 2022, respectively). The enzymatic activities 

of 17β-hydroxysteroid dehydrogenase (17β-HSD) and 3β-

hydroxysteroid dehydrogenase (3β-HSD) in testicular tissues 

were also evaluated using sandwich ELISA kits (17β-HSD: 

Cat. No. MBS2707678, MyBioSource, USA; 3β-HSD: Cat. 

No. CSB-EL010781RA, Cusabio, USA) according to the 

manufacturers’ instructions (Anwar et al., 2022; Kozłowska 

et al., 2019, respectively). 

2.4. Sperm analysis: 

Sperm collection was performed from the left cauda 

epididymis of each rat. The tissue was carefully dissected 

free of adhering connective tissue. To extract spermatozoa, 

the epididymis was minced in 5 mL of Ham’s F12 medium 

and incubated for 5 min at 35 °C to allow for sperm dispersal. 

The resulting suspension was subjected to repeated washings 

in fresh Ham’s F12 medium to isolate sperm for subsequent 

analysis. Sperm quality evaluation: encompassed three key 

parameters: count, motility, and morphology. Sperm 

concentration (×10⁶/mL) was determined using an improved 

Neubauer hemocytometer (Slott et al., 1991). A 10 µL aliquot 

of the washed suspension was loaded onto the chamber and 

allowed to settle for 10 min before counting. Percent motility 

was assessed by examining at least ten separate fields on the 

hemocytometer under a phase-contrast microscope and 

calculating the ratio of progressively motile sperm to the total 

number of sperm (Essawy et al., 2024). Sperm morphology 

was assessed on air-dried smears stained with eosin-nigrosin. 

For each animal, one hundred spermatozoa were 

systematically examined at high magnification (×400) under 

a bright-field microscope, and the percentage of cells 

exhibiting abnormal head or flagellar morphology was 

recorded.  

2.5. Quantitative Real-Time PCR  

Gene expression levels of AKT (Thymoma viral oncogene) 

and ERK (Extracellular signal-Regulated Kinase) were 

quantified by one-step quantitative real-time PCR (qRT-

PCR) using the QuantiTect SYBR Green RT-PCR Kit 

(Qiagen, Montgomery, MD, USA; cat. no. 204243). Total 

RNA was extracted from testicular tissues using TRIzol 

Reagent (Thermo Fisher Scientific, Waltham, MA, USA; cat. 

no. 15596-018) according to the manufacturer’s instructions. 

Each 25 µL reaction mixture contained 2× SYBR Green RT-

PCR Master Mix, QuantiTect RT Mix, template RNA (100 

ng), gene-specific primers (Table 1), and RNase-free water. 

Thermal cycling was carried out on a Rotor-Gene real-time 

PCR system with the following program: reverse 

transcription at 55 °C for 10 min, initial denaturation at 95 °C 

for 5 min, followed by PCR amplification under optimized 

annealing/extension conditions for each primer set. Relative 

expression levels were calculated using the 2^(–ΔΔCt) 

method, with β-Actin as the reference gene (Livak & 

Schmittgen, 2001). 

 

Table 1: The sequence of the Primer 

Gene 
 

Forward primer Reverse primer 

AKT  AGTCCCCACTCAACAACTTCT  GAAGGTGCGCTCAATGACTG  

ERK GAAGACACAGCACCTCAGCAA TGGAAGGCTTGAGGTCACGGT 

β-Actin   ATGTGGCTGAGGACTTTGATT ATCTATGCCGTGGATACTTGG 

According to Oguzoglu et al. (2024), Ramalingam et al. (2016), and Hassan et al. (2023) respectively. 

Accession number: XM_006240631.3, NM_053842.2, and XM_039089807.1, respectively 

 

2.6. Histological and immunohistochemical analysis: 

2. 6.1. Histological Processing 

Testes were collected, fixed in 10% neutral buffered 

formalin, and processed through standard dehydration, 

clearing, and paraffin embedding. Sections (5 µm) were 

stained with hematoxylin and eosin (H&E) using established 

protocols. Histopathological examination was performed 

using light microscopy (Olympus CX41) with digital image 

capture (Olympus UTU1X-2). 

2. 6.2. Immunohistochemical detection of apoptosis 

Apoptotic activity in testicular tissues was assessed via 

caspase-3 immunohistochemistry using the avidin-biotin 

complex (ABC) method (Hsu et al., 1981). Following 

deparaffinization and rehydration, sections were treated with 

0.3% hydrogen peroxide to quench endogenous peroxidase 

activity and blocked with 3% horse serum. Sections were 

incubated with a rabbit polyclonal anti–caspase-3 primary 

antibody (Abcam, ab4051; 1:20,000 dilution), followed by a 

biotinylated secondary antibody and ABC reagent. Antigen 

localization was visualized using 3,3′-diaminobenzidine 

(DAB), yielding a brown precipitate. Sections were 

counterstained with hematoxylin, dehydrated, cleared, and 

mounted. Caspase-3 positivity—indicative of apoptosis—was 

identified as brown cytoplasmic staining under light 

microscopy. 

 

2.7. Statistical analysis: 

All data were statistically analyzed using IBM SPSS 

Statistics (Version 27.0, IBM Corp., Chicago, USA) and 

GraphPad Prism (Version 10.1.2, GraphPad Software Inc., 

San Diego, CA, USA). Group comparisons were conducted 

using one-way analysis of variance (ANOVA) followed by 

Tukey’s post hoc test for multiple comparisons. Data are 

presented as mean ± standard deviation (SD). Statistical 

significance was set at p ≤ 0.05, with higher levels of 

significance indicated at p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001. 

12 



 

Mohamed et al. 

 

 

 JMRI, 2025; Vol. 46 No.3: (10-22) 

  3. Results 

3.1. Effects on Oxidative Stress Markers and Antioxidant 

Enzymes 

Exposure to sodium arsenite (As) triggered pronounced 

oxidative stress in testicular tissue. Rats subjected to As 

exhibited a significant increase (P < 0.05) in TBARS, 

indicating enhanced lipid peroxidation relative to controls 

(Figure 1A). This oxidative insult was accompanied by a 

marked reduction (P < 0.05) in key endogenous antioxidants, 

including GSH, SOD, and CAT (Figure 1B–D), reflecting a 

compromised antioxidant defense system. 

Importantly, co-administration of diosmin (As + DIO) 

effectively mitigated these oxidative perturbations. TBARS 

levels were notably lowered, while GSH, SOD, and CAT 

activities were restored compared to the As-only group, 

demonstrating DIO’s protective antioxidant potential. Rats 

receiving DIO alone displayed no significant changes in 

oxidative stress markers relative to controls, confirming that 

DIO does not disrupt redox homeostasis under normal 

conditions (Figure 1A–D). 

 
Figure (1) Evaluation of oxidative stress biomarkers, GSH, and the activities of antioxidant enzymes in the testis of different 

experimental groups. (A) TBARS, (B) GSH, (C) SOD and (D) CAT levels in testicular tissues. The results are exhibited as 

mean ± SD when n=6, which were analyzed following one-way ANOVA associated with multiple comparisons between 

different groups adopting Tukey’s test (**** p < 0.0001, *** p < 0.001, ** p < 0.01, and * p < 0.05). Abbreviations: GSH: 

glutathione; TBARS: thiobarbic acid reactive substance; SOD: superoxide dismutase; and CAT: catalase 

 

3.2. Effects on Inflammatory Markers 

As exposure notably increased (P < 0.05) the testicular levels 

of NF-κB and TNF-α compared to controls (Figure 2A, B). 

This effect was markedly attenuated by DIO co-

administration, with the As + DIO group showing 

significantly lower concentrations than the As-only group. In 

the DIO-alone group, levels of these markers remained 

comparable to controls (Figure 2A, B). 
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Figure (2) Estimation of inflammatory biomarkers in testis of different experimental groups. (A) NFkB (B) TNF-α in 

testicular tissues. The results are exhibited as mean ± SD when n =6, which were analyzed following one-way ANOVA 

associated with multiple comparisons between different groups adopting Tukey’s test (**** p < 0.0001, *** p < 0.001, ** p < 

0.01, and * p < 0.05). Abbreviations: NFkB: nuclear factor kappa B; TNF-α: Tumor Necrosis Factor alpha 

 

3.3. Effects on Sperm Quality, Reproductive Hormones, 

and Steroidogenic Enzymes 

Treatment with As led to a significant (P < 0.05) decline in 

sperm count and motility, alongside a marked increase in the 

percentage of sperm with abnormal morphology (Figure 3A–

C). Furthermore, a notable (P < 0.05) reduction was observed 

in serum levels of GnRH, testosterone, FSH, and LH, as well 

as in the activities of the steroidogenic enzymes 17β-HSD 

and 3β-HSD (Figure 3D–I). Co-treatment with DIO markedly 

attenuated these As-induced deficits, bringing all parameters 

closer to normal levels. Treatment with DIO alone resulted in 

values that were statistically indistinguishable from those of 

the control group. 

 
Figure (3) Determination of (A) sperm count, (B) sperm motility, (C) sperm abnormality, (D) GnRH, (E) Testosterone, (F) 

FSH, (G) LH, (H) 17-β HSD and (I) 3-β HSD in testis of different animal groups. The results are exhibited as mean ± SD when 

n =6, which were analyzed following one-way ANOVA associated with multiple comparisons between different groups 

adopting Tukey’s test (**** p < 0.0001, *** p < 0.001, ** p < 0.01, and * p < 0.05). Abbreviations: GnRH: gonadotropin 

releasing hormone; FSH: follicle stimulating hormone; LH: luteinizing hormone; 17-β HSD: 17β-Hydroxysteroid 

dehydrogenases; and 3-β HSD: 3β-Hydroxysteroid dehydrogenases 

 

3.4. Effects on Serum Lipid Profile 

Rats exposed to As displayed a dyslipidemic profile 

characterized by a notable (P < 0.05) elevation in serum total 

cholesterol, triglycerides, and LDL-C, accompanied by a 

significant (P < 0.05) reduction in HDL-C compared to 

controls (Figure 4A–D). Co-treatment with DIO substantially 

reversed this dyslipidemia, noticeably improving all lipid 

parameters compared to the As-only group. The lipid profile 

of the DIO-alone group remained normal and was not 

significantly different from that of the control group. 
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Figure (4) Assessment of Changes in the serum lipid profiles of experimental groups (A) Cholestrol, (B) Triglycerides, (C) 

HDL-C, and (D) LDL-C of animal groups. The results are exhibited as mean ± SD when n =6, which were analyzed following 

one-way ANOVA associated with multiple comparisons between different groups adopting Tukey’s test (**** p < 0.0001, *** 

p < 0.001, ** p < 0.01, and * p < 0.05). Abbreviations: HDL-C: high-density lipoprotein cholesterol; and LDL-C: low-density 

lipoprotein cholesterol 

 

3.5. Effects on Testicular Gene Expression 

The gene expression levels of both Akt and ERK were 

considerably upregulated in the testicular tissue of the As-

treated group relative to controls (Figure 5A, B). Co-

treatment with DIO restrained this As-induced upregulation, 

resulting in expression levels remarkably lower than those in 

the As-only group. The expression levels in the DIO-alone 

group showed no significant (P > 0.05) difference compared 

to controls.  

 
Figure (5) Determination of (A, B) mRNA expression of AKT and ERK in testicular tissues of different rat groups. The 

results are exhibited as mean ± SD when n =5, which were analyzed following one-way ANOVA associated with multiple 

comparisons between different groups adopting Tukey’s test (**** p < 0.0001, *** p < 0.001, ** p < 0.01, and * p < 0.05). 

Abbreviations Akt: protein kinase B; and ERK: extracellular signal-Regulated Kinase 
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3.6. Histopathological Observations 

Histological findings demonstrated that As severely 

compromised the integrity of testicular tissues. Testes from 

control and DIO-alone rats displayed normal architecture, 

characterized by intact seminiferous tubules, well-organized 

spermatogenic cells, abundant spermatozoa within the lumen, 

and healthy interstitial Leydig cells (Figure 6A, D). In sharp 

contrast, testes from the As-treated group exhibited severe 

damage, including vacuolization, cellular debris, and 

pyknotic nuclei. The seminiferous tubules were atrophied and 

had irregular outlines, while germ and Leydig cells were 

disorganized and degenerated (Figure 6B). Crucially, co-

treatment with DIO effectively countered this damage, 

resulting in a noticeable restoration of testicular morphology, 

with restored tubule structure and a normal arrangement of 

spermatogenic and Leydig cells (Figure 6C). 

 

  

  

Figure 6: Representative photomicrographs of testicular tissue across experimental groups: 

(A & D) Sections from control and DIO-alone rats reveal intact testicular structure, characterized by seminiferous tubules with 

normal morphology (black double-headed dotted arrow), healthy interstitial tissue with typical Leydig cells (L), and well-

organized spermatogenic series including spermatogonia (yellow arrow), primary spermatocytes (black arrow), secondary 

spermatocytes (green dotted arrow), spermatids (S), and spermatozoa occupying the luminal space (Z). 

(B) As-exposed group exhibits severe histopathological disruptions, including vacuolation (red dotted arrow), cellular debris 

deposition (yellow dotted arrow), nuclear pyknosis (black arrowhead), irregularly contoured atrophic tubules (black dotted 

arrow), and degenerated/disarrayed germinal epithelium (black square). 

(C) Combined As + DIO treatment reveals substantial recovery, with seminiferous tubules regaining normal appearance, well-

structured spermatogenic layers, and preserved Leydig cells (L). (H&E ×400) 

 

3.7. Immunohistochemical Analysis of Caspase-3 

Immunohistochemical analysis for caspase-3 revealed stark 

differences between the groups. Testicular tissue from control 

and DIO-alone rats showed only weak caspase-3 

immunoreactivity, indicating minimal cell death (Figure 7A, 

D). In contrast, the As-treated group exhibited strong positive 

expression of caspase-3, confirming a high rate of apoptosis 

(Figure 7B). Notably, co-treatment with DIO significantly 

mitigated this effect, with caspase-3 immunoreactivity 

returning to levels similar to the control group (Figure 7C). 
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Figure 7: Representative Immuno histochemistry of caspase-3 in testes (×400). Control (A) and DIO (D) sections reveal faint 

expression. In the As group (B), robust caspase-3 reactivity is detected, indicating enhanced apoptosis. Co-treatment with DIO 

(C) reduces this response, with only few positive cells. Yellow arrows = negative; black arrows = positive.  

 

4. Discussion 

This investigation provides compelling evidence that sodium 

arsenite (As) exposure precipitates extensive reproductive 

dysfunction in male rats through a multi-faceted pathogenesis 

involving oxidative damage, inflammatory activation, 

endocrine disruption, metabolic dysregulation, and apoptotic 

cell death (Ganie et al., 2024; Choudhary et al., 2024). The 

experimental data further establish diosmin (DIO) as a potent 

therapeutic agent capable of counteracting these pathological 

alterations through its diverse pharmacologic activities 

(Malayeri et al., 2024). 

The foundation of As-induced testicular injury appears to be 

rooted in profound oxidative stress, as demonstrated by the 

significant increase in TBARS and concomitant depletion of 

crucial antioxidant defenses (GSH, SOD, CAT). These 

findings align with those of Rachamalla et al. (2022) and 

Makena et al. (2025). This redox imbalance originates from 

arsenic's capacity to bind sulfhydryl groups in antioxidant 

enzymes and disrupt mitochondrial electron transport, 

culminating in excessive generation of reactive oxygen 

species (ROS) that damage cellular macromolecules and 

structures (Khan et al., 2013; Machado-Neves, 2022; Zargari 

et al., 2022; Eslami et al., 2024). Critically, co-administration 

of DIO with As effectively mitigated this oxidative assault, 

not only reducing TBARS levels but also restoring 

antioxidant reserves. This dual action suggests DIO’s 

polyphenolic structure confers direct free radical scavenging 

capabilities while potentially upregulating endogenous 

defense mechanisms, thereby preserving cellular integrity 

against As-induced peroxidative damage (Parhiz et al., 2015; 

Alkhalaf, 2020). 

Testicular tissues of As-exposed rats exhibited marked 

inflammatory activation, as shown by increased NF-κB and 

TNF-α levels. The observed activation of NF-κB and TNF-α 

following As exposure reflects a robust inflammatory 

response (Escudero-Lourdes, 2016; Akbari et al., 2022), 

which is often secondary to oxidative stress. ROS activate 

NF-κB, which in turn promotes the transcription of pro-

inflammatory cytokines like TNF-α, creating a vicious cycle 

of oxidative–inflammatory damage. 

Conversely, DIO co-treatment effectively mitigated this 

inflammatory cascade, maintaining NF-κB and TNF-α levels 

significantly below those observed in the As-only group. 

DIO’s anti-inflammatory potential seems to stem largely 

from its antioxidant capacity. Research indicates that 

flavonoids can inhibit NF-κB signaling (Elhelaly et al., 

2019), and for DIO, this effect is likely mediated by its 

ability to reduce oxidative stress (Parhiz et al., 2015; Mohtadi 
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et al., 2023). By lowering ROS levels, DIO removes the 

primary trigger that initiates the pro-inflammatory response, 

thereby dampening the cascade of inflammation. 

Moreover, As exposure markedly compromised male 

reproductive function, as reflected by reduced sperm count 

and motility and increased abnormal sperm morphology. 

These functional impairments were accompanied by a 

significant decline in serum GnRH, FSH, LH, and 

testosterone levels, as well as suppressed activities of 

steroidogenic enzymes 17β-HSD and 3β-HSD. The 

impairment of sperm quality and the reduction in key 

reproductive hormones and steroidogenic enzymes in As-

treated rats illustrate the functional consequences of this 

cellular damage (Khan et al., 2013; Machado-Neves, 2022; 

Makena et al., 2025). As markedly lowers sperm count and 

motility while increasing the proportion of morphologically 

abnormal sperm. These defects, often associated with 

oxidative stress and DNA damage in developing germ cells, 

hinder fertilization potential (Machado-Neves, 2022). As also 

disrupts the hypothalamic-pituitary-gonadal (HPG) axis, 

leading to reduced secretion of GnRH, decreased FSH and 

LH, and lowered testosterone production by Leydig cells 

(Zargari et al., 2022). The decline in testosterone results not 

only from direct Leydig cell damage but also from inhibited 

activity of 3β-HSD and 17β-HSD, which are essential for 

testosterone biosynthesis (Zargari et al., 2022; Makena et al., 

2025). 

Conversely, As + DIO rats showed notable improvement in 

all reproductive deficits. By mitigating oxidative stress, DIO 

protects germ cells and supports steroidogenic function 

(Abou-Elghait et al., 2022). Its effect may also involve the 

modulation of signaling pathways that upregulate 

steroidogenic enzyme expression, as seen with other 

flavonoids (Ni et al., 2020; Khamis et al., 2023; Deiab et al., 

2024). 

The present data indicate that As-induced dyslipidemia 

(elevated cholesterol, triglycerides, LDL-C; reduced HDL-C) 

(Pánico et al., 2022) further exacerbates reproductive 

toxicity. Lipid peroxidation products and dysregulated 

cholesterol metabolism can impair Leydig cell function (Jing 

et al., 2020). In contrast, DIO co-treatment successfully 

reversed these detrimental effects. DIO’s ability to improve 

the lipid profile is multifaceted, involving antioxidant 

protection of the liver, anti-inflammatory actions that prevent 

cytokine-driven dyslipidemia, and potential activation of 

nuclear receptors like PPAR-α to promote lipid catabolism 

and reverse cholesterol transport (Parhiz et al., 2015; Elhelaly 

et al., 2019; Chung et al., 2020; Ding et al., 2024).  

The observed upregulation of Akt and ERK gene expression 

after As exposure appears to be a maladaptive response to 

oxidative stress (Huang et al., 2016; Renu et al., 2018). While 

these pathways are essential for cell survival, their sustained 

activation can paradoxically drive apoptosis and disrupt 

spermatogenesis (Mukherjee & Gopalakrishnan, 2023). By 

contrast, the elevated expression caused by As exposure was 

counteracted by DIO co-treatment, which markedly reduced 

the levels compared to the As-only group. DIO’s ability to 

normalize the expression of these genes suggests it modulates 

critical survival signaling pathways, likely by alleviating the 

initial oxidative insult and potentially through direct 

inhibitory effects on the PI3K/Akt axis, as reported for 

similar compounds (Do Amaral et al., 2011; Rubio et al., 

2012; Sarhan et al., 2021; Deng et al., 2022).  

Exposure to As resulted in profound histopathological lesions 

within the testes, manifested by marked vacuolization, 

accumulation of cellular debris, condensed and pyknotic 

nuclei, shrunken seminiferous tubules with distorted 

contours, and extensive degeneration of both germinal and 

Leydig cell populations. These alterations were corroborated 

by intense caspase-3 immunoreactivity, signifying 

pronounced apoptotic activity. The severe histopathological 

damage and intense caspase-3 immunoreactivity in the As 

group provide morphological and biochemical proof of 

widespread apoptosis and testicular failure (Zargari et al., 

2022; Li et al., 2018; Adeogun et al., 2025). Conversely, rats 

co-administered with DIO retained largely preserved 

testicular cytoarchitecture, with reduced vacuolization and 

cellular degeneration, alongside a noticeably weaker caspase-

3 expression. The restoration of testicular architecture and 

suppression of caspase-3 activation in the DIO group offer 

compelling evidence of its therapeutic potential (Oyovwi et 

al., 2024). DIO’s anti-apoptotic effect is achieved by 

restoring the redox balance, inhibiting mitochondrial 

cytochrome c release, modulating Bcl-2 family proteins, and 

suppressing pro-apoptotic signaling pathways (Shalkami et 

al., 2018; Ağır & Eraslan, 2019; Koolaji et al., 2020; Hong & 

An, 2018). 

 

4. Conclusion 

This research provides compelling evidence that DIO serves 

as a potent protective agent against the multifaceted 

reproductive impairments induced by As in male rats. The 

observed benefits including restored sperm parameters, 

normalized GnRH–FSH–LH–testosterone axis function, and 

preserved steroidogenic enzyme activity are strongly linked 

to DIO’s ability to reduce oxidative stress and attenuate 

inflammatory responses within testicular tissues. 

Furthermore, the successful modulation of disrupted 

Akt/ERK signaling by DIO points to its influence on crucial 

cellular survival and proliferation pathways. Collectively, 

these findings illuminate the complex interplay between 

arsenic toxicity and cellular defense mechanisms, positioning 

DIO as a promising natural therapeutic candidate. Future 

investigations should focus on translating these preclinical 

insights into clinical applications, exploring optimal dosing 

regimens, and elucidating additional molecular targets to 

further enhance strategies for male reproductive health 

protection in arsenic-contaminated regions. 
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