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INTRODUCTION 

Neurodegenerative diseases (NDs) 

encompass several sporadic and/or 

familial disorders that affect the central 

nervous system (CNS). These disorders 

are identified by the occurrence of a 

vicious cycle of neuronal and synaptic 

dysfunction in the CNS, with the 

outcome being irreversible neuronal 

degeneration (Choonara et al., 2009). 

The main complications induced by this 

neuronal degeneration are permanent or 

temporary impairment in memory, 

cognitive, sensory, behavioral and/or 

motor functions (Wilson et al., 2023). 

Currently, these NDs are incurable. The 

existing treatments for NDs aim to 

prevent the aggravation of their 

complications, prevent permanent 

disabilities, and enhance the quality of 

patients’ lives (Shusharina et al., 2023). 

 

 

 

 
 

Multiple Sclerosis  

Multiple Sclerosis (MS) is the most 

prevalent progressive ND among young 

adults in the world (Evans et al., 2013; 

Feigin et al., 2017). It is a chronic 

disease of the CNS where 

neurodegeneration occurs in 

correspondence with inflammatory and 

demyelinating features (Gandhi et al., 

2010). MS affects approximately 2.8 

million individuals around the world 

with a continuously rising prevalence 

(Walton et al., 2020). Several factors 

have been identified to affect MS 

incidence, such as genetic composition, 

biological sex, and geographic location 

(Simpson et al., 2019). North America 

and Europe have the largest prevalence 

of MS incidence (Simpson et al., 2019; 

Walton et al., 2020). The identification 

of other early predictors of MS may 

drastically improve the long-term 

outcome of MS (Confavreux et al., 

2000). 

Pathogenesis of Multiple Sclerosis 

The pathogenesis of MS includes the 

disruption of the blood brain barrier 

(BBB), multifocal inflammation, 

demyelination, and reactive gliosis in 

addition to the loss of oligodendrocyte 

and axonal function (Trapp and Nave, 

2008). The pathogenesis of MS is 

mediated by various molecular 

mechanisms and the most prominent of 

these mechanisms is the autoimmune 

response (Figure 1) (Baecher-Allan et 

al., 2018; Paudel et al., 2019). The 

golden target of MS therapies is to 

suppress the pathological autoimmune 

responses while the adaptive immune 

responses remain uncompromised 

(Paudel et al., 2019). 

MS is characterized by inflammatory 

and demyelination features where an 

orchestra of many molecular 

mechanisms work together to induce the 

disease and later mediate its 

progression. These molecular 

mechanisms include the induction of 

inflammatory responses, activation of 

glial cells focal demyelination, immune 

cell infiltration and axonal loss, leading 

to the formation of lesions which is the 

hallmark of MS incidence. These newly 

formed lesions are responsible for the 

symptoms of MS and the expansion and 

aggravation of the existing lesions leads 

to the disease progression (Henderson et 

al., 2009; Wootla et al., 2012; Popescu 

et al., 2013).  
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ABSTRACT: 

Multiple Sclerosis (MS) is an inflammatory neurodegenerative disease with 

distinctive features of focal demyelination, axonal loss, activation of glial 

cells, and immune cells infiltration. The symptoms of this disease are the 

consequence of the formation of new lesions in the central nervous system 

(CNS) and the expansion and aggravation of existing lesions causes its 

progression. The efficiency of current therapeutic approaches for MS is 

usually limited by the side effects. Chlorogenic acid (CA) is a natural 

compound found in a wide range of plant materials and is used in the 

prevention of many diseases. This review presents preclinical evidence that 

supports the use of CA in MS treatment protocols. 
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Figure (1):A diagrammatic presentation of the pathogenic 

mechanisms of multiple sclerosis. 

HMGB1: High Mobility Group Box Protein 1, NF-κB: 

Nuclear Factor kappa B, MMP9: Matrix Metalloproteinase 

9, MBP: Myelin Basic Protein, PGC-1α: Peroxisome 

Proliferator-Activated Receptor Gamma Coactivator 1-

Alpha, GSH: Glutathione, MDA: Malondialdehyde, and NO: 

Nitric Oxide.  

 

MS is conveyed via several autoreactive immune cells that 

instigate the progressive destruction of myelin and axon 

which subsequently leads to chronic impairment in sensory 

and motor functions (Trapp et al., 2008; Lucchinetti et al., 

2009). During the pathogenesis of MS, and as the myelin 

destruction sets in, the axons are exposed and prone to 

destruction. On the other hand, during remyelination, the 

compromised axons recover their myelin sheath and regain 

their function (Franklin, 2002). This remyelination process 

essentially requires the generation of new oligodendrocytes 

(OLs). The oligodendrocytes (OLs) are the CNS myelinating 

cells, and they originate from the oligodendrocyte precursor 

cells (OPCs) (Keirstead et al., 1997; Watanabe et al., 2002). 

Moreover, existing mature OLs can contribute to the 

remyelination process of MS lesions (Duncan et al., 2018). 

Notably, the remyelination efficiency diminishes as the 

patient ages and as the severity of the lesions intensifies 

(Franklin, 2002; Chang et al., 2002; Frischer et al., 2015; 

Gruchot et al., 2019). The maturation process of OPCs into 

OLs is critical to supply the neuronal axons with the required 

structural and metabolic functions (Funfschilling et al., 2012; 

Lee et al., 2012; Duncan et al., 2021).  

 

Multiple Sclerosis and Neuroinflammation 

High Mobility Group Box Protein 1 
High mobility group box protein 1 (HMGB1) is a ubiquitous 

nuclear protein released by glial cells (astrocytes, 

oligodendrocytes, and microglia) and neurons upon the 

activation of the inflammasome activation as it is a vital 

instigator of neuroinflammation (Paudel et al., 2018; Paudel 

et al., 2019). The HMGB1 has become a hot topic in 

neuroscience as it represents a viable biomarker of 

neurological dysfunctions. Furthermore, it is implicated in the 

pathogenesis of many NDs and traumatic brain injury 

(Wittkowski et al., 2008; Paudel et al., 2018; Andersson et 

al., 2018; Paudel et al., 2019). High levels of HMGB1 are 

reported in MS patients and in experimental autoimmune 

encephalomyelitis (EAE) models, which illustrates the 

implication of HMGB1 in the progression of MS (Sun et al., 

2015). This crosstalk between HMGB1 and the pathogenesis 

of MS rendered HMGB1 a golden target for novel therapeutic 

approaches in managing and treating symptoms of MS.  

Nuclear factor kappa B (NF-κB) is another vital mediator of 

proinflammation. It is strongly implicated in the incidence 

and progression of MS (Eggert et al., 2008; Yan et al., 2018). 

NF-κB is a crucial transcription factor that mediates several 

immune and inflammation cascades (Li et al., 2002; 

Vallabhapurapu et al., 2009). The activation of NF-κB is 

regulated by the IKK (IkappaB kinase) complex (Zhang et 

al., 2017). IKK complex phosphorylates the inhibitor of NF-

κB to activate NF-κB and its subsequent signaling pathways 

(Hayden et al., 2008). The main signaling pathways of NF-

κB are identified as canonical (classical) and non-canonical 

(alternative) pathways (Hayden et al., 2008; Zhou et al., 

2020). The canonical or classical signaling pathway of NF-

κB is triggered by several proinflammatory cytokines, 

antigens, and toll-like receptor-binding molecules (Li et al., 

2002).  

In the case of MS, NF-κB mediates distinct cascades 

implicated in the pathogenesis of the disease (Ponath et al., 

2018). Studies recorded elevation in the level of NF-kB in 

several blood and immune cell populations obtained from 

patients suffering from MS (Eggert et al., 2008; Yan et al., 

2018). Further studies reported a connection between 

elevated genes related to NF-kB in T cells and the severity of 

MS relapsing episodes (Satoh et al., 2008; Lindsey et al., 

2011). Moreover, the activation of NF-κB is upregulated in 

MS lesions, which leads to the disruption of the BBB and the 

exacerbation of the inflammation status through the excessive 

production of proinflammatory cytokines. These processes 

orchestrate MS immune and inflammatory responses leading 

to even further complications and the progression of the 

disease (Mc Guire et al., 2013).  

Multiple Sclerosis and Demyelination 
MS is an inflammatory demyelinating disease of the CNS. 

Myelin basic protein (MBP) is a membrane-associated 

protein found in the neuronal axon terminals and is a key 

element in maintaining the integrity of BBB and insulating 

axons in the CNS (Aleksandr et al., 2022). MBP is 

a structural protein that binds to the opposing leaflets of the 

cytoplasmic side of the oligodendrocyte membrane and 

ensures that the myelin sheath retains its consistent, compact 

form (Min et al., 2009; Ahmed et al., 2010).  

The MBP exists as eight different charged isoforms. They are 

known as C1 to C8 forms, and they are products of various 

post-translational modifications that affect the net charge of 

MBP, with C1 being the unmodified MBP isoform, which is 

present in healthy adult myelin. The charges of the other 

isoforms are altered by various processes such as 

phosphorylation and deamination or, in the case of C8, by 

citrullination, which is the conversion of arginine to citrulline 

(Widder et al., 2020). So, MS is correlated with increased 

deamination of MBP in the CNS. Therefore, these post-

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/structural-protein
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/oligodendrocyte
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/myelin-sheath
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translational modifications and their consequent modified 

isoforms are implicated in the pathogenesis of MS, with C8 

being the most abundant MBP isoform in MS incidence 

(Widder et al., 2020; Martinsen et al., 2022). 

Another demyelination marker is kallikrein 6 (KLK6), also 

referred to as Zyme or Neurosin, which is produced 

essentially by mature OLs in the CNS (Little et al., 1997). 

The OLs undergo a series of differentiation processes that 

finally generate the myelinating OLs that wrap axons with a 

myelin sheath. The role of this myelin sheath is to preserve 

the structural integrity of neurons and facilitate neuronal 

signaling (Ferrer, 2018; Stassart et al., 2018). The 

myelination of CNS occurs late during neural development 

and takes a long timeframe. The CNS myelination occurs 

mostly through the first two decades of human life, the last to 

undergo myelination is the late-maturing brain constituents 

such as the prefrontal cortex (Mitew et al., 2014).  

The KLK6 is implicated in the demyelination process 

occurring in MS (Scarisbrick et al., 2012; Stassart et al., 

2018). Studies documented that increased levels of KLK6 

occurred within CNS infiltrating cells such as macrophages 

and T cells, which were characteristically present at the sites 

of demyelination in EAE animal models (Scarisbrick et al., 

2002; Yoon et al., 2016). In addition, KLK6 levels were 

elevated in EAE and animal models of stroke and injury of 

the spinal cord (Terayama et al., 2004; Terayama et al., 

2005). Moreover, high levels of KLK6 were observed in the 

sampled CSF and serum of patients suffering from 

progressive MS (Scarisbrick et al., 2008; LO Hebb et al., 

2010).  

 

Multiple Sclerosis and Autophagy 
Autophagy is another major molecular mechanism implicated 

in the pathogenesis of MS. Autophagy is responsible for the 

breakdown and efficient utilization of damaged cellular 

components to maintain optimal cellular homeostasis 

(Parzych et al., 2014). Autophagy is a complex molecular 

mechanism that is responsible for maintaining cellular 

homeostasis, but when this molecular mechanism is 

compromised, it becomes harmful to the cells, especially to 

highly differentiated cells such as neurons (Parzych et al., 

2014). This double-edged nature of autophagy rendered it one 

of the most investigated molecular mechanisms implicated in 

MS pathogenesis (Misrielal et al., 2020). Impaired expression 

of the autophagy genes occurs in T lymphocytes and tissues 

of MS patients and EAE animal models (Feng et al., 2017). 

Autophagy is also a critical regulator of both the adaptive and 

the innate immune responses, one of the basic and most 

concrete mechanisms involved in MS pathology (Levine et 

al., 2011).  

Autophagosome formation is a fundamental step in 

autophagy, regulated by Beclin1 and Microtubule-associated 

protein 1A/1B-light chain 3 (LC3) genes (Tanida, 2010; Lee 

et al., 2017). The assessment of Beclin1 and LC3 expression 

levels is a widely utilized approach to indicate if autophagy is 

in its optimal status or has been compromised (Sahni et al., 

2014; Lee et al., 2016). Beclin1 was the earliest gene 

described in mammalian autophagy (Wirawan et al., 2012). 

Interplay between Beclin1, B-cell lymphoma 2 (BCL-2), and 

other proteins mediate autophagy levels (Liang et al., 1998). 

Competitive binding of proteins to Beclin1 or BCL-2 can 

disturb or reinforce the Beclin1 separation from BCL-2, 

being the required step to initiate autophagy (Tran et al., 

2021).  

 

Multiple Sclerosis and Mitochondrial Homeostasis 
Mitochondrial dynamics is a term that identifies the 

continuous fission and fusion, and the balance between these 

two processes ensures the preservation of mitochondrial 

integrity (Tilokani et al., 2018). Mitochondrial fission is the 

cleavage of one mitochondrion into two separate 

mitochondria, while mitochondrial fusion is the merging of 

two separate mitochondria to produce one fused 

mitochondrion (Tilokani et al., 2018). To maintain balanced 

mitochondrial fusion and fission, proteins such as mitofusin 1 

and 2 (MFN1 and MFN2) are essential, as they mediate the 

fusion of mitochondria, whereas proteins such as dynamin-

related protein 1 (Drp1) regulate the mitochondrial fission 

(Frank et al., 2001; Wang et al., 2019). Disrupted Drp1 

expression leads to unregulated mitochondrial fission and 

fragmentation, leading to axonal and neuronal loss (Cho et 

al., 2009). Inhibition of Drp1 prevents excessive 

mitochondrial fragmentation and, therefore, attenuates EAE 

progression in animal models (Luo et al., 2017). In contrast, 

the MFN2 gene is a key generator of healthy mitochondria in 

neurons; its inhibition will lead to the loss of mitochondria, 

initiating autophagy and apoptosis, leading to neuronal loss 

(de Oliveira et al., 2021). Moreover, inhibition of MFN2 in 

human spinal motor neurons is responsible for the loss of 

axonal integrity as it impairs mitochondrial transport along 

axons, impairing the critical stable energy flux into these 

axons (Mou et al., 2021). Therefore, disruption in 

mitochondrial dynamics and mitochondrial dysfunction are 

implicated in the pathogenesis of MS and EAE (Campbell et 

al., 2014; Sadeghian et al., 2016).  

Another process that preserves mitochondrial integrity is 

mitochondrial biogenesis, the process that generates new 

mitochondria from the growth and division of pre-existing 

ones (Ploumi et al., 2017; Li et al., 2017). Specific nuclear 

transcription factors mediating the expression of the genes 

that encode the mitochondrial proteins are implicated in 

mitochondrial biogenesis. The peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC-1α), 

nuclear respiratory factors (NRF1 and NRF2) are critical 

elements in the assortment of components that regulate 

mitochondrial biogenesis (Ploumi et al., 2017). Moreover, 

mitochondrial biogenesis is mediated via mitochondrial 

transcription factor A (TFAM), mitochondrial transcription 

factor B1 (TFB1M), and B2 (TFB2M) in addition to 

mitochondrial DNA (mtDNA) copy number (Ploumi et al., 

2017; Song et al., 2023). The mitochondrial biogenesis gene 

expression profile, including PGC-1α, TFAM, and NRF1, as 

well as mtDNA copy number, exhibit a distinct decline in MS 

patients, which indicates that reduced expression of those 

mitochondrial biogenesis genes makes an integral implication 

in the pathogenesis of MS (Campbell et al., 2011; Witte et al., 

2014; Barcelos et al., 2019; Song et al., 2023; Wang et al., 

2024). 
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Multiple Sclerosis and Oxidative Stress 
Since neurons have a specifically high energy demand, they 

utilize a high amount of oxygen, which induces the excessive 

production and release of reactive oxygen species (ROS), 

disabling the cell’s machinery to neutralize and clear these 

ROS, eventually leading to uncontrolled oxidative stress 

(Watts et al., 2018). Oxidative stress has been considered an 

essential contributor to neurodegeneration (Watts et al., 

2018). Also, it is responsible for myelin destruction and the 

disruption of BBB integrity, followed by infiltration of 

immune cells into the CNS, which are distinct hallmarks of 

the pathogenesis of MS (Lehner et al., 2011). Thus, its 

implication in MS pathogenesis is the main target of 

numerous therapeutic approaches (Fetisova et al., 2017). The 

use of antioxidants protects neurons against oxidative 

damage, promotes remyelination of the oligodendrocytes, and 

hence hinders the progression of MS lesions and induces 

remission of MS symptoms (Fetisova et al., 2017; Pegoretti et 

al., 2020; Zha et al., 2022).  

Nitric oxide (NO) is a viable marker of oxidative stress 

(Bryan et al., 2004). It is implicated in many biological 

functions like neurotransmission, immune response, 

vasodilation, and platelet aggregation (Schlossmann et al., 

2003; Cosby et al., 2003). Thus, NO is a main culprit in 

several pathological conditions, including NDs (Lundberg et 

al., 2008; Knott et al., 2009). It is produced by nitric oxide 

synthase (NOS) throughout the conversion of L-arginine to 

L-citrulline (Coleman, 2001). In the incidence of 

inflammation within the brain, glial cells produce excessive 

amounts of NO as an inflammatory response (Olivera et al., 

2016). This abnormal increase in the levels of NO aggravates 

neuroinflammation and induces neuronal death (Olivera et 

al., 2016; Liy et al., 2021). The consequence is an additional 

trigger for NOS expression, generating even more NO and 

creating this vicious cycle of neurodegeneration  (Subedi et 

al., 2021). Notably, there is a strong correlation between the 

high levels of nitric oxide end products (NOx) and the 

progression severity of MS (Calabrese et al., 2002). 

Malondialdehyde (MDA) is a final product of lipid 

peroxidation and a viable marker of oxidative stress (Del Rio 

et al., 2005). The increased production of ROS is responsible 

for MDA upregulation (Gaweł et al., 2004). MDA is a 

cytotoxic molecule that has detrimental effects on various 

cellular mechanisms and has been involved in several 

pathogenic disorders, including NDs (Taso et al., 2019; 

Tofighi et al., 2021; Cordiano et al., 2023). MS patients have 

significantly elevated serum MDA levels, especially during 

their relapse periods compared to the remission periods, 

which illustrates a direct correlation between the MDA level 

and the progression of the disease (Ghonimi et al., 2021). 

 

Treatment of Multiple Sclerosis 
The Food and Drug Administration (FDA) agency has 

officially validated 15 medications such as alemtuzumab, 

dimethyl fumarate (Tecfidera), fingolimod (Gilenya), 

ocrelizumab, mitoxantrone, natalizumab, peginterferon beta-

1a, teriflunomide (Aubagio), glatiramer acetate (Copaxone), 

IFNβ-1a and IFNβ-1b to hinder the progression of MS and 

reverse its complications (English et al., 2015; Li et al., 

2020). Disease Modifying Treatments (DMTs) can also 

reduce the rate of relapses in relapsing remitting multiple 

sclerosis (RRMS) patients and slow the progression of MS, 

especially when the treatment is administered early (Loma et 

al., 2011; Comi et al., 2012; Noyes et al., 2013).  

The major problems with the existing medications that treat 

MS are their adverse complications in addition to their 

extremely high cost (Hartung et al., 2015; Rafiee Zadeh et al., 

2019). For instance, in the case of glatiramer acetate, 

commercially known as Copaxone, which is a first-line 

disease-modifying agent utilized for the treatment of patients 

with relapsing-remitting MS (RRMS). Serious adverse effects 

have been reported among MS patients receiving Copaxone. 

Such effects include injection site reactions or symptoms of a 

systemic immediate post-injection reaction including 

flushing, chest pain, palpitations, anxiety, dyspnea, 

tachycardia and throat constriction (Ziemssen et al., 2008; 

Caporro et al., 2014). Other complications have been also 

reported in MS patients treated with alemtuzumab. These 

complications include infusion-related symptoms, cytokine 

storm, increased risk of autoimmune diseases and increased 

risk of infections (Gross et al., 2015). About 20 to 30% of 

alemtuzumab treated patients have also reported problems in 

the thyroid gland and Graves’ disease and hypothyroidism 

have been linked to the autoimmune complications of 

alemtuzumab (Coles et al., 1999; Mahzari et al., 2015). Many 

MS patients receiving dimethyl fumarate experience 

gastrointestinal irritation and flushing during treatment which 

pressure some of the patients to discontinue the treatment as 

the discomfort becomes unbearable (Phillips et al., 2014; Xu 

et al., 2015).  

The other major obstacle that MS patients face is that these 

medications are extremely expensive. Studies investigating 

the prices of these medications in the American 

pharmaceutical market stated that first-generation DMTs, 

originally costing $8,000 to $11,000 lately cost $72,744 per 

year and these prices have been facing even further escalation 

in recent years (Hartung et al., 2015; Schauf et al., 2023). 

The complications of these medications and the continuous 

rising in their pieces are what compelled researchers to 

explore the availability of lower-cost therapies that may 

considerably decrease the economic burden on these patients 

and the health care systems. Several studies aimed to exploit 

the neuroinflammatory and neuroprotective potential of 

countless natural products in attempts to implicate them in 

treating the symptoms of NDs and explore their potential 

ability to attenuate the progression of these NDs (Mohd 

Sairazi et al., 2020; Sharifi-Rad et al., 2020; Chen et al., 

2021; Lu et al., 2022). 

 

Chlorogenic Acid 
Chlorogenic acid (CA), also referred to as 5-O-caffeoylquinic 

acid (5-CQA), is an abundant highly functional polyphenolic 

compound found in different types of coffee beans (Farah et 

al., 2006). Green coffee beans are the richest with CA as they 

contain 5–14% of CA but this percentage is significantly 

reduced after roasting (Farah et al., 2006; Moon et al., 2009). 

Supplements of CA have been used as over-the-counter 

metabolic boosters and weight loss inducers (Pepper, 2013). 
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Besides its role as a promising natural weight loss 

supplement, CA lowers blood glucose levels and attenuates 

insulin resistance (Roshan et al., 2018). It ameliorates 

inflammatory conditions as it targets multiple inflammatory 

pathways, and it has diminished drug resistance (Wang et al., 

2022; Lemos et al., 2022; Feng et al., 2023). It possesses 

several cardiovascular and neurological protective properties 

(Wang et al., 2020; Zheng et al., 2022). Moreover, studies 

have provided concrete evidence of the promising potential 

of CA to treat brain and spinal cord injuries (Chen et al., 

2018; Zheng et al., 2022). These neuroprotective effects were 

exerted by regulating oxidative stress related pathways as 

well as mediating various anti-inflammatory pathways in the 

brain and spinal cord (Figure2) (Rebai et al., 2017; Chen et 

al., 2018). Numerous studies have also illustrated the 

neuroprotective effects of CA and its ability to improve 

cerebral ischemia-reperfusion (CI/R) injury in rats (Kumar et 

al., 2019; Liu et al., 2020; Li et al., 2023). 

 

 
Figure(2):A diagrammatic presentation of the neuroprotective, 

anti-inflammatory and antioxidative effects of chlorogenic acid. 

HMGB1: High Mobility Group Box Protein 1, NF-κB: 

Nuclear Factor kappa B, MMP9: Matrix Metalloproteinase 

9, MBP: Myelin Basic Protein, PGC-1α: Peroxisome 

Proliferator-Activated Receptor Gamma Coactivator 1-

Alpha, GSH: Glutathione, MDA: Malondialdehyde, and NO: 

Nitric Oxide.  

 

Chlorogenic Acid and Neuroinflammation 

CA exerts its neuroprotective capacity by blocking the 

signaling pathways of neuroinflammatory mediators such as 

HMGB1 and NF-κB (Huang et al., 2023; Li et al., 2023). CA 

alleviates hepatic ischemia–reperfusion injury (HIRI) by 

suppressing the active release of HMGB1 in rats (Li et al., 

2023). This study also found that CA can protect against 

HIRI by alleviating the inflammatory response mediated by 

the HMGB1/TLR-4/NF-κB axis (Li et al., 2023). Similarly, 

in a sepsis model, CA protects mice from sepsis by blocking 

the release of HMGB1 (Lee et al., 2012). Additionally, CA 

prevents the nuclear translocation of NF-κB, blocking its 

subsequent target gene binding and inhibiting its activation 

(Yu et al., 2021; Shah et al., 2022; Orhan et al., 2024). 

Another study found that CA inhibits the NF-κB pathway and 

alleviates the intestinal damage induced by chronic stress in 

rats (Zhao et al., 2023). A study also found that CA reduced 

spinal cord injury and actively suppressed the accompanied 

cascades of neuroinflammation by regulating the NF-κB 

signaling pathways (Chen et al., 2018). Further studies 

illustrated the aforementioned neuroprotective effects of CA 

(Heitman et al., 2017; Liu et al., 2020; Xiong et al., 2023).  In 

vivo data also demonstrated that CA treatment improves the 

survival of dopaminergic neurons and inhibits 

lipopolysaccharide (LPS)-induced microglial activation 

(Shen et al., 2012). 

Another inflammatory mediator that CA targets as it mediates 

its anti-inflammatory activity is MMP9. A study aimed to 

investigate CA as a candidate chemo-preventive agent in 

hepatocellular carcinoma demonstrated that CA suppressed 

MMP9, which prevented the disintegration of the 

extracellular matrix and it suppressed the invasion and 

proliferation of cancerous cells and attenuated metastasis (Liu 

et al., 2020). Studies that explored the neuroprotective effects 

of CA found that CA ameliorates brain damage and edema by 

inhibiting MMP9 in a rat model of focal cerebral ischemia 

(Lee et al., 2012). Another study found that CA preserved the 

integrity of BBB by suppressing the expression of MMP9 in 

a mouse model of intracerebral hemorrhage as it 

subsequently attenuated the neurological impairments and 

reduced brain water content (Liu et al., 2022).  

 

Chlorogenic Acid and Demyelination 

As mentioned earlier, OLs are the myelin forming cells in the 

CNS, are the main target in demyelinating 

neuroinflammatory diseases such as MS. So, studies have 

been relentless to induce remyelinating machineries and to 

protect OLs. A study aimed to investigate the effects of CA 

in M03-13, an immortalized human OL cell line found that 

CA induces a blockade of proliferation, driving cells to 

differentiation, generating increased mRNA levels of MBP 

and proteolipid protein (PLP), which are major markers of 

mature OLs. The findings of this study emphasized the great 

beneficial potential of CA in reversing the demyelination 

induced by MS (La Rosa et al., 2023). 

 

Chlorogenic Acid and Autophagy 

In neurons, the autophagy process is critical for 

mitochondrial function. Dysregulation in autophagy 

contributes to the accumulation of damaged mitochondria and 

other dysfunctional organelles, exacerbation of oxidative 

stress, neuroinflammation, and eventually neuronal cell death 

in NDs. Elevated autophagy biomarkers positively correlate 

with aggravated axonal damage and MS progression as over-

activation of autophagy is implicated in detrimental 

neurological consequences (Li et al., 2019). CA demonstrated 

autophagy-suppressing effects in several disease models, 

namely non-alcoholic fatty liver disease (NAFLD) (Yan et 

al., 2018) and Alzheimer’s disease (Gao et al., 2020). The 

study evaluating the effects of CA on NAFLD model, 

demonstrated that CA treatment attenuated the liver injury 

induced by high fat diet, and it inhibited autophagy and 

ameliorated insulin resistance in a rat model of NAFLD (Yan 

et al., 2018). Another study found that the neuroprotective 

effects of CA are attributed to its role in the inhibition of 

neuronal cell apoptosis and autophagy induced by 

neurotoxicity as it can actively reverse such damage when it 

occurs (Shi et al., 2019). 
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Chlorogenic Acid and Mitochondrial Homeostasis 

Given the importance of mitochondria in neuronal cells, 

mitochondrial homeostasis is an important aspect that should 

be studied in any study related to CNS disorders, including 

MS. Mitochondrial homeostasis is the coordinated 

equilibrium between different mitochondrial processing, 

including mitophagy, mitochondrial fission and fusion, and 

mitochondrial biogenesis (Bustamante-Barrientos et al., 

2023). Impaired mitochondrial dynamics are implicated in 

most NDs (Antonucci et al., 2021). Similar to autophagy, the 

over-activation of mitophagy in MS animal model aggravates 

the pathological complications of the disease (Cossu et al., 

2022). In addition to impaired mitophagy, anomalies in 

mitochondrial biogenesis are implicated in MS (Wang et al., 

2024).  A study that explored the various protective effects of 

CA against kainic acid-induced seizures and neuronal 

damage in rats found that CA prevents kainic acid-induced 

alterations in autophagy and mitophagy parameters (Pai et al., 

2023). This study illustrated that CA-induced upregulation of 

PGC-1α prevented kainic acid-induced neuronal damage in 

rats as it subsequently alleviated the kainic acid-induced 

mitochondrial damage and preserved the hippocampal 

mitochondrial integrity. 

Chlorogenic Acid and Oxidative Stress 

CA is also a potent antioxidant (Liang et al., 2015; Bao et al., 

2018). CA can attenuate hydrogen peroxide-induced 

oxidative damage. In addition, CA treatment improves 

mitochondrial membrane potential and inhibits free radical 

formation (Li et al., 2023). A study has shown that CA 

increased antioxidant enzymes activities, along with higher 

GSH contents, as CA improved the cellular antioxidant 

defense in epileptic mice. These results were associated with 

lowered MDA and NO levels (Althagafi, 2024). 

Studies have aimed to explicitly illustrate the antioxidant 

activity of CA. For instance, a study investigated the role of 

CA in protection against the induction of oxidative stress in 

the CNS following exposure to cadmium (Cd) found that the 

pretreatment of rats with CA prior to Cd exposure 

significantly restored the depleted levels of GSH, and 

attenuated Cd-induced MDA levels in brain tissue (Hao et al., 

2015). Another study using an animal model of Alzheimer’s 

disease, has found that CA decreased the MDA level in both 

the frontal cortex and the hippocampus (Kwon et al., 2010). 

This antioxidative activity of CA was attributed to its affinity 

to reduce lipid peroxidation in addition to reducing free 

radical scavenging activity (Kwon et al., 2010).  

Conclusion and Future Perspectives 

Chlorogenic acid is an innovative agent with numerous 

potential pharmacological effects. To date, its ability to target 

neuro-inflammatory processes during MS pathology has been 

proven in preclinical studies utilizing an animal model of 

MS. One of the most important characteristics proving the 

potential of chlorogenic acid is its multifaceted mechanism of 

action, which is closely related to the pathomechanism of 

MS. 

Considering that MS is not only chronic and progressive but 

also heterogeneous, it would be interesting to explore further 

studies where chlorogenic acid could be tested on an 

innovative MS-like model characterized by both 

neurodegenerative features and accumulation in diverse 

endophenotypes. Such studies could be conducted through 

collaboration between neuropathologists and laboratory 

scientists with extensive research experience in neural 

degeneration. 
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